e^(ikx)の和
\(n\in\mathbb{N}_{0}\)とする。
\[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
\[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
\begin{align*}
\sum_{k=-n}^{n}e^{ikx} & =\sum_{k=0}^{2n}e^{i(k-n)x}\\
& =e^{-inx}\sum_{k=0}^{2n}e^{ikx}\\
& =e^{-inx}\frac{1-e^{i(2n+1)x}}{1-e^{ix}}\\
& =\frac{e^{-inx}-e^{i(n+1)x}}{1-e^{ix}}\\
& =\frac{e^{-i\left(n+\frac{1}{2}\right)x}-e^{i\left(n+\frac{1}{2}\right)x}}{e^{-i\frac{x}{2}}-e^{i\frac{x}{2}}}\\
& =\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}}
\end{align*}
ページ情報
タイトル | e^(ikx)の和 |
URL | https://www.nomuramath.com/ohqhumvt/ |
SNSボタン |
『多重対数関数を含む積分』を更新しました。
相加平均・相乗平均・調和平均の大小関係
\[
\text{調和平均}\leq\text{相乗平均}\leq\text{相加平均}
\]
反復コンウェイのチェーン表記
\[
X\rightarrow\left(p+1\right)\rightarrow\left(q+1\right)=f^{p\circ}\left(X\right)
\]
余弦と正弦の2乗が肩にある方程式
\[
2^{\cos^{2}x}+2^{\sin^{2}x}=3\;,\;x=?
\]