ガンマ関数の微分
ガンマ関数の微分は以下の通りになる。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\begin{align*}
\frac{d}{dz}\Gamma(z) & =\Gamma(z)\frac{d}{dz}\log\left(\Gamma(z)\right)\\
& =\Gamma(z)\psi(z)
\end{align*}
ページ情報
タイトル | ガンマ関数の微分 |
URL | https://www.nomuramath.com/ntcr6sqv/ |
SNSボタン |
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
ガンマ関数の非正整数近傍での値
\[
\lim_{\epsilon\rightarrow\pm0}\Gamma\left(-\epsilon\right)=-\lim_{\epsilon\rightarrow\pm0}\Gamma\left(\epsilon\right)
\]
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[
\psi(z+1)=\psi(z)+\frac{1}{z}
\]