ガンマ関数の微分
ガンマ関数の微分は以下の通りになる。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\[ \frac{d}{dz}\Gamma(z)=\Gamma(z)\psi(z) \] ここで\(\psi(z)\)はディガンマ関数である。
\begin{align*}
\frac{d}{dz}\Gamma(z) & =\Gamma(z)\frac{d}{dz}\log\left(\Gamma(z)\right)\\
& =\Gamma(z)\psi(z)
\end{align*}
ページ情報
| タイトル | ガンマ関数の微分 |
| URL | https://www.nomuramath.com/ntcr6sqv/ |
| SNSボタン |
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]
ディガンマ関数・ポリガンマ関数の級数表示・テイラー展開と調和数・一般化調和数
\[
\psi\left(z\right)=-\gamma+H_{z-1}
\]
ガンマ関数の絶対収束条件
ガンマ関数$\Gamma\left(z\right)$は$\Re\left(z\right)>0$で絶対収束

