4角形の対角線と面積の関係
4角形の対角線と面積の関係
反時計まわりに4角形\(ABCD\)がある。

このとき4角形\(ABCD\)の面積\(S\)は
\[ S=\frac{1}{2}\left(\overrightarrow{AC}\times\overrightarrow{DB}\right) \] となる。
反時計まわりに4角形\(ABCD\)がある。
このとき4角形\(ABCD\)の面積\(S\)は
\[ S=\frac{1}{2}\left(\overrightarrow{AC}\times\overrightarrow{DB}\right) \] となる。
\begin{align*}
S & =\left|\triangle ABC\right|+\left|\triangle ACD\right|\\
& =\triangle CAB+\triangle DAC\\
& =\frac{1}{2}\overrightarrow{CA}\times\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DA}\times\overrightarrow{AC}\\
& =\frac{1}{2}\left(\overrightarrow{CA}\times\overrightarrow{AB}+\overrightarrow{AC}\times\overrightarrow{DA}\right)\\
& =\frac{1}{2}\left(\overrightarrow{AC}\times\left(\overrightarrow{AB}+\overrightarrow{DA}\right)\right)\\
& =\frac{1}{2}\left(\overrightarrow{AC}\times\overrightarrow{DB}\right)
\end{align*}
時計回りに4角形\(ABCD\)があっても符号は変わらない。
ページ情報
| タイトル | 4角形の対角線と面積の関係 |
| URL | https://www.nomuramath.com/ly4zxh53/ |
| SNSボタン |
正n角形の面積
\[
S=\frac{na^{2}}{4\tan\frac{\pi}{n}}
\]
点と超平面・直線の距離
\[
d=\frac{\left|\boldsymbol{n}\cdot\overrightarrow{OP}+a\right|}{\left|\boldsymbol{n}\right|}
\]
外接円を持つ4角形の角度と対角線の長さ
\[
p=\sqrt{\frac{cd\left(a^{2}+b^{2}\right)+ab\left(c^{2}+d^{2}\right)}{ab+cd}}
\]
接弦定理
\[
\angle BAP=\angle BCA
\]

