三角関数と双曲線関数
三角関数と双曲線関数には以下の関係がある。
(1)
\[ i\sin x=\sinh\left(ix\right) \](2)
\[ \cos x=\cosh\left(ix\right) \](3)
\[ i\tan x=\tanh\left(ix\right) \](4)
\[ i\sinh x=\sin(ix) \](5)
\[ \cosh x=\cos(ix) \](6)
\[ i\tanh x=\tan(ix) \](1)
\begin{align*} i\sin x & =i\frac{e^{ix}-e^{-ix}}{2i}\\ & =\frac{e^{\left(ix\right)}-e^{\left(-ix\right)}}{2}\\ & =\sinh ix \end{align*}(2)
\begin{align*} \cos x & =\frac{e^{ix}+e^{-ix}}{2}\\ & =\frac{e^{\left(ix\right)}+e^{\left(-ix\right)}}{2}\\ & =\cosh ix \end{align*}(3)
\begin{align*} i\tan x & =i\frac{\sin x}{\cos x}\\ & =\frac{\sinh ix}{\cosh ix}\\ & =\tanh ix \end{align*}(4)
\begin{align*} i\sinh x & =i\sinh\left\{ i(-ix)\right\} \\ & =-\sin(-ix)\\ & =\sin(ix) \end{align*}(5)
\begin{align*} \cosh x & =\cosh\left\{ i(-ix)\right\} \\ & =\cos(-ix)\\ & =\cos(ix) \end{align*}(6)
\begin{align*} i\tanh x & =i\frac{\sinh x}{\cosh x}\\ & =i\frac{-i\sin(ix)}{\cos(ix)}\\ & =\tan(ix) \end{align*}ページ情報
| タイトル | 三角関数と双曲線関数 |
| URL | https://www.nomuramath.com/lsiur0p5/ |
| SNSボタン |
逆正接関数・逆双曲線正接関数と多重対数関数の関係
\[
\Tan^{\bullet}z=\frac{i}{2}\left(-\Li_{1}\left(iz\right)+\Li_{1}\left(-iz\right)\right)
\]
三角関数と双曲線関数の実部と虚部
\[
\sin z=\sin\left(\Re\left(z\right)\right)\cosh\left(\Im\left(z\right)\right)+i\cos\left(\Re\left(z\right)\right)\sinh\left(\Im\left(z\right)\right)
\]
3角関数・双曲線関数の総和
\[
\sum_{k=m_{1}}^{m_{2}}\sin\left(ak+b\right)=\sin^{-1}\left(\frac{a}{2}\right)\sin\left(\left(m_{1}+m_{2}\right)\frac{a}{2}+b\right)\sin\left(\left(1+m_{2}-m_{1}\right)\frac{a}{2}\right)
\]
逆三角関数と逆双曲線関数の対数表示
\[
\Sin^{\bullet}z=-i\Log\left(iz+\sqrt{1-z^{2}}\right)
\]

