リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\begin{align*}
\zeta\left(s,1\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(1+k\right)^{s}}\\
& =\sum_{k=1}^{\infty}\frac{1}{k^{s}}\\
& =\zeta\left(s\right)
\end{align*}
ページ情報
タイトル | リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係 |
URL | https://www.nomuramath.com/jxqyaxms/ |
SNSボタン |
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
\[
\frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right)
\]
ζ(4k)の総和
\[
\sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi
\]
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]