ガンマ関数の極限問題
\[
\lim_{x\rightarrow0}\frac{\Gamma(ax)}{\Gamma(x)}=\frac{1}{a}
\]
\begin{align*}
\lim_{x\rightarrow0}\frac{\Gamma(ax)}{\Gamma(x)} & =\frac{1}{a}\lim_{x\rightarrow0}\frac{ax\Gamma(ax)}{x\Gamma(x)}\\
& =\frac{1}{a}\lim_{x\rightarrow0}\frac{\Gamma(1+ax)}{\Gamma(1+x)}\\
& =\frac{1}{a}
\end{align*}
ページ情報
| タイトル | ガンマ関数の極限問題 |
| URL | https://www.nomuramath.com/ioidql08/ |
| SNSボタン |
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]
ガンマ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\frac{\Gamma\left(n\right)}{\Gamma\left(n+\frac{1}{2}\right)}=1
\]
ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
\[
\Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt
\]
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[
\psi(z+1)=\psi(z)+\frac{1}{z}
\]

