2項係数の特殊な積
2項係数の特殊な積
\[ C(x,t)C(t,y)=C(x,y)C(x-y,x-t) \]
\[ C(x,t)C(t,y)=C(x,y)C(x-y,x-t) \]
\begin{align*}
C(x,t)C(t,y) & =\frac{x!}{t!(x-t)!}\frac{t!}{y!(t-y)!}\\
& =\frac{x!}{y!(x-y)!}\frac{(x-y)!}{(x-t)!(t-y)!}\\
& =C(x,y)C(x-y,x-t)
\end{align*}
ページ情報
タイトル | 2項係数の特殊な積 |
URL | https://www.nomuramath.com/io58wa0k/ |
SNSボタン |
2項係数の2乗和
\[
\sum_{j=0}^{m}C^{2}(m,j)=C(2m,m)
\]
2項係数の微分
\[
\frac{d}{dx}C(x,y) =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)
\]
2項係数の飛び飛びの総和
\[
\sum_{k=-\infty}^{\infty}C\left(mn,mk+l\right)=\frac{1}{m}\sum_{j=0}^{m-1}\left(1+\omega_{m}^{j}\right)^{mn}\left(\omega_{m}^{j}\right)^{-l}
\]
2項係数の総和
\[
\sum_{k=0}^{n}P(k,m)C(n,k)=P(n,m)2^{n-m}
\]