偶数と奇数の2重階乗
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ \left(2n\right)!!=2^{n}n! \](2)
\[ \left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \](1)
\begin{align*} \left(2n\right)!! & =\prod_{k=1}^{n}2k\\ & =2^{n}\prod_{k=1}^{n}k\\ & =2^{n}n! \end{align*}(2)
\begin{align*} \left(2n+1\right)!! & =\prod_{k=1}^{n}\left(2k+1\right)\\ & =2^{n}\prod_{k=1}^{n}\left(k+\frac{1}{2}\right)\\ & =2^{n}\prod_{k=1}^{n}\frac{\left(k+\frac{1}{2}\right)!}{\left(k-\frac{1}{2}\right)!}\\ & =2^{n}\frac{\left(n+\frac{1}{2}\right)!}{\left(\frac{1}{2}\right)!}\\ & =2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \end{align*}ページ情報
タイトル | 偶数と奇数の2重階乗 |
URL | https://www.nomuramath.com/i5egz33z/ |
SNSボタン |
第1種・第2種不完全ガンマ関数の漸化式
\[
\Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x}
\]
ガンマ関数の非正整数近傍での値
\[
\lim_{\epsilon\rightarrow\pm0}\Gamma\left(-\epsilon\right)=-\lim_{\epsilon\rightarrow\pm0}\Gamma\left(\epsilon\right)
\]
ガウスの乗法公式
\[
\Gamma(nz)=\frac{n^{nz-\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{k=0}^{n-1}\Gamma\left(z+\frac{k}{n}\right)
\]
ポリガンマ(ディガンマ)関数の乗法公式
\[
\psi^{\left(m\right)}\left(nz\right)=\delta_{0,m}\log n+\frac{1}{n^{m+1}}\sum_{k=0}^{n-1}\psi^{\left(m\right)}\left(z+\frac{k}{n}\right)
\]