偶数と奇数の2重階乗
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ \left(2n\right)!!=2^{n}n! \](2)
\[ \left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \](1)
\begin{align*} \left(2n\right)!! & =\prod_{k=1}^{n}2k\\ & =2^{n}\prod_{k=1}^{n}k\\ & =2^{n}n! \end{align*}(2)
\begin{align*} \left(2n+1\right)!! & =\prod_{k=1}^{n}\left(2k+1\right)\\ & =2^{n}\prod_{k=1}^{n}\left(k+\frac{1}{2}\right)\\ & =2^{n}\prod_{k=1}^{n}\frac{\left(k+\frac{1}{2}\right)!}{\left(k-\frac{1}{2}\right)!}\\ & =2^{n}\frac{\left(n+\frac{1}{2}\right)!}{\left(\frac{1}{2}\right)!}\\ & =2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \end{align*}ページ情報
タイトル | 偶数と奇数の2重階乗 |
URL | https://www.nomuramath.com/i5egz33z/ |
SNSボタン |
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]
ディガンマ関数・ポリガンマ関数の級数表示・テイラー展開と調和数・一般化調和数
\[
\psi\left(z\right)=-\gamma+H_{z-1}
\]