ハイバー演算子の定義
\[
H_{n}\left(a,b\right):=\begin{cases}
b+1 & n=0\\
a+b & n=1\\
\underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a} & n=2,3,\cdots
\end{cases}
\]
集合が同じで位相が異なる空間
$\left(X,\mathcal{O}_{1}\right),\left(X,\mathcal{O}_{2}\right)$が位相空間ならば$\left(X,\mathcal{O}_{1}\cap\mathcal{O}_{2}\right)$も位相空間になる。
オイラーの4平方恒等式
\[
\left(a_{0}^{\;2}+a_{1}^{\;2}+a_{2}^{\;2}+a_{3}^{\;2}\right)\left(b_{0}^{\;2}+b_{1}^{\;2}+b_{2}^{\;2}+b_{3}^{\;2}\right)=\left(a_{0}b_{0}-a_{1}b_{1}-a_{2}b_{2}-a_{3}b_{3}\right)^{2}+\left(a_{0}b_{1}+a_{1}b_{0}+a_{2}b_{3}-a_{3}b_{2}\right)^{2}+\left(a_{0}b_{2}-a_{1}b_{3}+a_{2}b_{0}+a_{3}b_{1}\right)^{2}+\left(a_{0}b_{3}+a_{1}b_{2}-a_{2}b_{1}+a_{3}b_{0}\right)^{2}
\]
[python]for文の基本