ζ(4k)の総和
ζ(4k)の総和
(1)
\[ \sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi \] (2)
\[ \sum_{k=1}^{\infty}\left(\zeta(4k-2)-1\right)=-\frac{1}{8}+\frac{\pi}{4}\tanh^{-1}\pi \]
(1)
\[ \sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi \] (2)
\[ \sum_{k=1}^{\infty}\left(\zeta(4k-2)-1\right)=-\frac{1}{8}+\frac{\pi}{4}\tanh^{-1}\pi \]
(1)
\begin{align*} \sum_{k=1}^{\infty}\left(\zeta(4k)-1\right) & =\frac{1}{2}\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)\left(1^{k}+\left(-1\right)^{k}\right)\\ & =\frac{1}{2}\left(\left[\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)x^{2k}\right]_{x=1}+\left[\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)x^{2k}\right]_{x=i}\right)\\ & =\frac{1}{2}\left(\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)+\left[\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)-\frac{x^{2}}{1-x^{2}}\right]_{x=i}\right)\cmt{\sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)}\\ & =\frac{1}{2}\left(\frac{3}{4}+\frac{1}{2}\left(1-\pi\tanh^{-1}\pi\right)+\frac{1}{2}\right)\cmt{\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)=\frac{3}{4}}\\ & =\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi \end{align*}(2)
\begin{align*} \sum_{k=1}^{\infty}\left(\zeta(4k-2)-1\right) & =\frac{1}{2}\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)\left(1^{k}-\left(-1\right)^{k}\right)\\ & =\frac{1}{2}\left(\left[\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)x^{2k}\right]_{x=1}-\left[\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)x^{2k}\right]_{x=i}\right)\\ & =\frac{1}{2}\left(\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)-\left[\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)-\frac{x^{2}}{1-x^{2}}\right]_{x=i}\right)\cmt{\sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)}\\ & =\frac{1}{2}\left(\frac{3}{4}-\frac{1}{2}\left(1-\pi\tanh^{-1}\pi\right)-\frac{1}{2}\right)\cmt{\sum_{k=1}^{\infty}\left(\zeta(2k)-1\right)=\frac{3}{4}}\\ & =-\frac{1}{8}+\frac{\pi}{4}\tanh^{-1}\pi \end{align*}ページ情報
| タイトル | ζ(4k)の総和 |
| URL | https://www.nomuramath.com/hc4bqfq8/ |
| SNSボタン |
ゼータ関数の通常型母関数
\[
\sum_{k=2}^{\infty}\zeta\left(k\right)z^{k}=-z\left(\psi\left(z\right)+\pi\tan^{-1}\left(\pi z\right)+\gamma\right)
\]
リーマン・ゼータ関数の等式(解析接続)
\[
\zeta\left(s\right)=1+\sum_{j=0}^{\infty}C\left(-s,j\right)\zeta\left(s+j\right)
\]
リーマン・ゼータ関数の解析接続による非負整数値
\[
\zeta\left(-n\right)=\left(-1\right)^{n}\frac{B_{n+1}}{n+1}
\]
リーマン・ゼータ関数の微分の極限
\[
\lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right)=\pm\left(-1\right)^{n}n!
\]

