矩形関数の定義
矩形関数の定義
矩形(くけい)関数は次で定義される。
\[ \mathrm{rect}\left(x\right):=\begin{cases} 1 & \left|x\right|<\frac{1}{2}\\ \frac{1}{2} & \left|x\right|=\frac{1}{2}\\ 0 & \frac{1}{2}<\left|x\right| \end{cases} \] \(\mathrm{rect}\left(\pm\frac{1}{2}\right)\)は\(\frac{1}{2}\)以外にも\(0,1\)か未定義とすることもあります。

矩形(くけい)関数は次で定義される。
\[ \mathrm{rect}\left(x\right):=\begin{cases} 1 & \left|x\right|<\frac{1}{2}\\ \frac{1}{2} & \left|x\right|=\frac{1}{2}\\ 0 & \frac{1}{2}<\left|x\right| \end{cases} \] \(\mathrm{rect}\left(\pm\frac{1}{2}\right)\)は\(\frac{1}{2}\)以外にも\(0,1\)か未定義とすることもあります。
(1)
短型(たんけい)関数ではなく矩形(くけい)関数です。\(x\)軸で囲まれる面積は1、すなわち\(\int_{-\frac{1}{2}}^{\frac{1}{2}}\text{rect}\left(x\right)dx=1\)となります。
(2)
\(\mathrm{rect}\left(\pm\frac{1}{2}\right)=0\)とした矩形関数は定義関数を用いて\(\mathrm{rect}\left(x\right)=1_{\left(-\frac{1}{2},+\frac{1}{2}\right)}\left(x\right)\)で表すことができます。\(\mathrm{rect}\left(\pm\frac{1}{2}\right)=1\)とした矩形関数は定義関数を用いて\(\mathrm{rect}\left(x\right)=1_{\left[-\frac{1}{2},+\frac{1}{2}\right]}\left(x\right)\)で表すことができます。
\(\mathrm{rect}\left(\pm\frac{1}{2}\right)=\frac{1}{2}\)とした矩形関数は定義関数を用いて\(\mathrm{rect}\left(x\right)=\frac{1}{2}\left(1_{\left(-\frac{1}{2},+\frac{1}{2}\right)}\left(x\right)+1_{\left[-\frac{1}{2},+\frac{1}{2}\right]}\left(x\right)\right)\)で表すことができます。
ページ情報
| タイトル | 矩形関数の定義 |
| URL | https://www.nomuramath.com/ftjk5en2/ |
| SNSボタン |
ζ(2)の値
\[
\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\]
簡単な2次式の素数問題
\[
n^{2}-6n+8\text{が素数のなる}n
\]
調和数の相反公式
\[
H_{1-z}-H_{z}=\pi\tan^{-1}\left(\pi z\right)+\frac{1}{1-z}-\frac{1}{z}
\]
[2016年京都大学・数学問2]シンプルな整数問題
$p,q$を素数として$p^{q}+q^{p}$が素数となる全ての値を求めよ。

