重心は中線を2:1に内分
重心は中線を2:1に内分
重心は位置は中線を2:1に内分する位置である。
重心は位置は中線を2:1に内分する位置である。
直線\(AG\)と直線\(BC\)との交点を\(P\)とする。
\begin{align*} \overrightarrow{AG} & =\overrightarrow{OG}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OA}+\overrightarrow{AC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\\ & =\frac{2}{3}\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\\ & =\frac{2}{3}\overrightarrow{AP} \end{align*} これより、\(\overrightarrow{GP}=\overrightarrow{GA}+\overrightarrow{AP}=-\frac{2}{3}\overrightarrow{AP}+\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AP}\)となるので\(\left|AG\right|:\left|GP\right|=2:1\)となる。
\begin{align*} \overrightarrow{AG} & =\overrightarrow{OG}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OA}+\overrightarrow{AC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\\ & =\frac{2}{3}\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\\ & =\frac{2}{3}\overrightarrow{AP} \end{align*} これより、\(\overrightarrow{GP}=\overrightarrow{GA}+\overrightarrow{AP}=-\frac{2}{3}\overrightarrow{AP}+\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AP}\)となるので\(\left|AG\right|:\left|GP\right|=2:1\)となる。
ページ情報
タイトル | 重心は中線を2:1に内分 |
URL | https://www.nomuramath.com/dmi4y13f/ |
SNSボタン |
3角形上での3角関数
\[
\sin A+\sin B+\sin C=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}
\]
円となるための条件
\[
\frac{a^{2}+b^{2}}{4}-c>0
\]
3角形の角と対辺の大小関係
\[
A<B\Leftrightarrow a<b
\]
傍心円の半径
\[
r_{a}=\frac{S}{s-a}
\]