重心は中線を2:1に内分
重心は中線を2:1に内分
重心は位置は中線を2:1に内分する位置である。
重心は位置は中線を2:1に内分する位置である。
直線\(AG\)と直線\(BC\)との交点を\(P\)とする。
\begin{align*} \overrightarrow{AG} & =\overrightarrow{OG}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OA}+\overrightarrow{AC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\\ & =\frac{2}{3}\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\\ & =\frac{2}{3}\overrightarrow{AP} \end{align*} これより、\(\overrightarrow{GP}=\overrightarrow{GA}+\overrightarrow{AP}=-\frac{2}{3}\overrightarrow{AP}+\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AP}\)となるので\(\left|AG\right|:\left|GP\right|=2:1\)となる。
\begin{align*} \overrightarrow{AG} & =\overrightarrow{OG}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{OA}+\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OA}+\overrightarrow{AC}}{3}-\overrightarrow{OA}\\ & =\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\\ & =\frac{2}{3}\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\\ & =\frac{2}{3}\overrightarrow{AP} \end{align*} これより、\(\overrightarrow{GP}=\overrightarrow{GA}+\overrightarrow{AP}=-\frac{2}{3}\overrightarrow{AP}+\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AP}\)となるので\(\left|AG\right|:\left|GP\right|=2:1\)となる。
ページ情報
| タイトル | 重心は中線を2:1に内分 |
| URL | https://www.nomuramath.com/dmi4y13f/ |
| SNSボタン |
2等分線同士のなす角
\[
\angle CPB=\frac{\pi+\angle CAB}{2}
\]
3角形上での3角関数
\[
\sin A+\sin B+\sin C=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}
\]
5心(重心・内心・外心・垂心・傍心)の定義と存在性
点と超平面・直線の距離
\[
d=\frac{\left|\boldsymbol{n}\cdot\overrightarrow{OP}+a\right|}{\left|\boldsymbol{n}\right|}
\]

