円となるための条件
円となるための条件
\[ x^{2}+y^{2}+ax+by+c=0 \] が円となるための条件は
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] である。
\[ x^{2}+y^{2}+ax+by+c=0 \] が円となるための条件は
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] である。
\begin{align*}
0 & =x^{2}+y^{2}+ax+by+c\\
& =\left(x+\frac{a}{2}\right)^{2}-\frac{a^{2}}{4}+\left(y+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c\\
& =\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}-\left(\frac{a^{2}+b^{2}}{4}-c\right)
\end{align*}
従って、
\[ \left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=\left(\frac{a^{2}+b^{2}}{4}-c\right) \] となる。
これより、円となるためには中心はどこでもよく、半径の2乗は正でなければいけないので、
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] となる。
\[ \left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=\left(\frac{a^{2}+b^{2}}{4}-c\right) \] となる。
これより、円となるためには中心はどこでもよく、半径の2乗は正でなければいけないので、
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] となる。
ページ情報
タイトル | 円となるための条件 |
URL | https://www.nomuramath.com/c8satbbw/ |
SNSボタン |
ブレートシュナイダーの公式
\[
S=\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)-abcd\cos^{2}\frac{A+C}{2}}
\]
ヘロンの公式
\[
S=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}
\]
トレミーの定理
\[
\left|\overrightarrow{AB}\right|\left|\overrightarrow{CD}\right|+\left|\overrightarrow{BC}\right|\left|\overrightarrow{DA}\right|=\left|\overrightarrow{BD}\right|\left|\overrightarrow{CA}\right|
\]
3角形の垂心と円に内接する4角形