円となるための条件
円となるための条件
\[ x^{2}+y^{2}+ax+by+c=0 \] が円となるための条件は
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] である。
\[ x^{2}+y^{2}+ax+by+c=0 \] が円となるための条件は
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] である。
\begin{align*}
0 & =x^{2}+y^{2}+ax+by+c\\
& =\left(x+\frac{a}{2}\right)^{2}-\frac{a^{2}}{4}+\left(y+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c\\
& =\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}-\left(\frac{a^{2}+b^{2}}{4}-c\right)
\end{align*}
従って、
\[ \left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=\left(\frac{a^{2}+b^{2}}{4}-c\right) \] となる。
これより、円となるためには中心はどこでもよく、半径の2乗は正でなければいけないので、
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] となる。
\[ \left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=\left(\frac{a^{2}+b^{2}}{4}-c\right) \] となる。
これより、円となるためには中心はどこでもよく、半径の2乗は正でなければいけないので、
\[ \frac{a^{2}+b^{2}}{4}-c>0 \] となる。
ページ情報
タイトル | 円となるための条件 |
URL | https://www.nomuramath.com/c8satbbw/ |
SNSボタン |
鋭角・直角・鈍角と鋭角3角形・直角3角形・鈍角3角形の定義と性質
$0^{\circ}$より大きく$90^{\circ}$より小さい角を鋭角という。
5心と頂点までの距離
\[
\left|AG\right|^{2}=\frac{-a^{2}+2b^{2}+2c^{2}}{9}
\]
傍心円の半径
\[
r_{a}=\frac{S}{s-a}
\]
方べきの定理
\[
\left|PA_{1}\right|\left|PA_{2}\right|=\left|OP\right|^{2}-r^{2}
\]