x²-x+1で割った余り
x²-x+1で割った余り
\(x^{1000}\)を\(x^{2}-x+1\)で割った余りを求めよ。
\(x^{1000}\)を\(x^{2}-x+1\)で割った余りを求めよ。
\begin{align*}
x^{1000} & =x\left(x^{3}\right)^{333}\\
& =x\left(\left(x+1\right)\left(x^{2}-x+1\right)-1\right)^{333}\\
& =x\sum_{k=0}^{333}C\left(333,k\right)\left(-1\right)^{333-k}\left(\left(x+1\right)\left(x^{2}-x+1\right)\right)^{k}\\
& =x\left(C\left(333,0\right)\left(-1\right)^{333}\left(\left(x+1\right)\left(x^{2}-x+1\right)\right)^{0}+\sum_{k=1}^{333}C\left(333,k\right)\left(-1\right)^{333-k}\left(\left(x+1\right)\left(x^{2}-x+1\right)\right)^{k}\right)\\
& =x\left(-1+\sum_{k=1}^{333}C\left(333,k\right)\left(-1\right)^{333-k}\left(\left(x+1\right)\left(x^{2}-x+1\right)\right)^{k}\right)\\
& =-x+\sum_{k=1}^{333}xC\left(333,k\right)\left(-1\right)^{333-k}\left(\left(x+1\right)\left(x^{2}-x+1\right)\right)^{k}
\end{align*}
となるのでこれより、余りは\(-x\)となる。
ページ情報
| タイトル | x²-x+1で割った余り |
| URL | https://www.nomuramath.com/a8osbymi/ |
| SNSボタン |
2の34乗と5の14乗の大小関係
\[
2^{34}\lesseqgtr5^{14}
\]
4次式の点の軌跡
点$\left(t^{2}+1,t^{4}+2t^{2}\right)$の軌跡
2変数2次式の最小値
$x^{2}+2xy+2y^{2}+2x+3$の最小値
1=2の証明
この証明はどこが間違えてる?

