双心4角形の面積
双心4角形の面積
双心4角形\(ABCD\)の各辺を\(a,b,c,d\)とすると面積\(S\)は
\[ S=\sqrt{abcd} \] となる。

双心4角形\(ABCD\)の各辺を\(a,b,c,d\)とすると面積\(S\)は
\[ S=\sqrt{abcd} \] となる。
双心4角形とは内接円\(I\)と外接円\(J\)の両方を持つ4角形のことです。
内接円を持つ4角形の面積は、
\[ S=\sqrt{abcd}\sin\frac{A+C}{2} \] となり、外接円を持つ4角形は対角の和が180°になるので、
\begin{align*} S & =\sqrt{abcd}\sin\frac{\pi}{2}\\ & =\sqrt{abcd} \end{align*} となる。
\[ S=\sqrt{abcd}\sin\frac{A+C}{2} \] となり、外接円を持つ4角形は対角の和が180°になるので、
\begin{align*} S & =\sqrt{abcd}\sin\frac{\pi}{2}\\ & =\sqrt{abcd} \end{align*} となる。
ページ情報
| タイトル | 双心4角形の面積 |
| URL | https://www.nomuramath.com/amqxdjg9/ |
| SNSボタン |
円周角の定理とその逆とタレスの定理
\[
\angle BOA=2\angle BPA
\]
3角形上での3角関数
\[
\sin A+\sin B+\sin C=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}
\]
双心4角形の作図方法
点と超平面・直線の距離
\[
d=\frac{\left|\boldsymbol{n}\cdot\overrightarrow{OP}+a\right|}{\left|\boldsymbol{n}\right|}
\]

