3角形関数の定義
3角形関数の定義
3角形関数\(\mathrm{tri}\left(x\right)\)は次で定義される。
\begin{align*} \mathrm{tri}\left(x\right) & :=\begin{cases} 0 & x<-1\\ 1+x & -1\leq x<0\\ 1-x & 0\leq x<1\\ 0 & 1\leq x \end{cases}\\ & =\begin{cases} 1-\left|x\right| & \left|x\right|<1\\ 0 & 1\leq\left|x\right| \end{cases}\\ & =\max\left(1-\left|x\right|,0\right)\\ & =\frac{1}{2}\left|x+1\right|+\frac{1}{2}\left|x-1\right|-\left|x\right| \end{align*}
3角形関数\(\mathrm{tri}\left(x\right)\)は次で定義される。
\begin{align*} \mathrm{tri}\left(x\right) & :=\begin{cases} 0 & x<-1\\ 1+x & -1\leq x<0\\ 1-x & 0\leq x<1\\ 0 & 1\leq x \end{cases}\\ & =\begin{cases} 1-\left|x\right| & \left|x\right|<1\\ 0 & 1\leq\left|x\right| \end{cases}\\ & =\max\left(1-\left|x\right|,0\right)\\ & =\frac{1}{2}\left|x+1\right|+\frac{1}{2}\left|x-1\right|-\left|x\right| \end{align*}
\(x\)軸で囲まれる面積は1、すなわち\(\int_{-1}^{1}\text{tri}\left(x\right)dx=1\)となります。
\begin{align*}
\frac{1}{2}\left|x+1\right|+\frac{1}{2}\left|x-1\right|-\left|x\right| & =\begin{cases}
-\frac{1}{2}\left(x+1\right)-\frac{1}{2}\left(x-1\right)+x & x<-1\\
\frac{1}{2}\left(x+1\right)-\frac{1}{2}\left(x-1\right)+x & -1\leq x<0\\
\frac{1}{2}\left(x+1\right)-\frac{1}{2}\left(x-1\right)-x & 0\leq x<1\\
\frac{1}{2}\left(x+1\right)+\frac{1}{2}\left(x-1\right)-x & 1\leq x
\end{cases}\\
& =\begin{cases}
0 & x<-1\\
x+1 & -1\leq x<0\\
-x+1 & 0\leq x<1\\
0 & 1\leq x
\end{cases}\\
& =\mathrm{tri}\left(x\right)
\end{align*}
ページ情報
タイトル | 3角形関数の定義 |
URL | https://www.nomuramath.com/fo42rrdo/ |
SNSボタン |
拡張多重階乗の簡単な値
\[
0!^{n}=\frac{1}{\sqrt[n]{n}\left(\frac{1}{n}\right)!}
\]
ブレートシュナイダーの公式
\[
S=\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)-abcd\cos^{2}\frac{A+C}{2}}
\]
直和と直積・デカルト冪の定義
\[
\prod_{\lambda\in\Lambda}A_{\lambda}=\left\{ f:\Lambda\rightarrow\bigcup_{\lambda\in\Lambda}A_{\lambda};f\left(\lambda\right)\in A_{\lambda},\lambda\in\Lambda\right\}
\]
『分離公理(T0・T1・T2・T3・T4・正則・正規・その他)の定義』を更新しました。