3角形の垂心と円に内接する4角形
3角形の垂心と円に内接する4角形
3角形\(ABC\)があり垂心を\(H\)として直線\(AH\)と直線\(BC\)の交点を\(P\)、直線\(BH\)と直線\(CA\)の交点を\(Q\)、直線\(CH\)と直線\(AB\)の交点を\(R\)とする。
このとき4角形\(ARHQ,BPHR,CQHP\)は円に内接する。

3角形\(ABC\)があり垂心を\(H\)として直線\(AH\)と直線\(BC\)の交点を\(P\)、直線\(BH\)と直線\(CA\)の交点を\(Q\)、直線\(CH\)と直線\(AB\)の交点を\(R\)とする。
このとき4角形\(ARHQ,BPHR,CQHP\)は円に内接する。
\(\angle ARH=\angle HQA=90^{\circ}\)で\(\angle ARH+\angle HQA=180^{\circ}\)なので4角形\(ARHQ\)は円に内接する。
4角形\(BPHR,CQHP\)も同様である。
4角形\(BPHR,CQHP\)も同様である。
ページ情報
タイトル | 3角形の垂心と円に内接する4角形 |
URL | https://www.nomuramath.com/nh6bw354/ |
SNSボタン |
多角形での内接円の半径
\[
r=\frac{S}{s}
\]
3角形の面積と位置ベクトル
\[
\boldsymbol{X}=\frac{p\boldsymbol{A}+q\boldsymbol{B}+r\boldsymbol{C}}{p+q+r}
\]
5心(重心・内心・外心・垂心・傍心)の定義と存在性
鋭角・直角・鈍角と鋭角3角形・直角3角形・鈍角3角形の定義と性質
$0^{\circ}$より大きく$90^{\circ}$より小さい角を鋭角という。