包含写像・射影・商写像は連続写像
包含写像・射影・商写像は連続写像
包含写像・射影・商写像は連続写像となる。
包含写像・射影・商写像は連続写像となる。
(1)
位相空間\(\left(X,\mathcal{O}\right)\)と部分集合\(A\subseteq X\)があるとき、包含写像\(\iota:A\rightarrow X\)は連続写像となる。(2)
位相空間\(\left(X,\mathcal{O}_{X}\right),\left(Y,\mathcal{O}_{Y}\right)\)があるとき、射影\(\pi_{X}:X\times Y\rightarrow X\)は連続写像となる。(3)
位相空間\(\left(X,\mathcal{O}\right)\)と商集合\(X\setminus\sim\)があるとき、商写像\(f:X\rightarrow X\setminus\sim\)は連続写像となる。(1)
\(A\)での部分位相\(\left(A,\mathcal{O}_{A}\right)\)は\(\mathcal{O}_{A}=\left\{ O\cap A;O\in\mathcal{O}\right\} \)なので、任意の\(O\in\mathcal{O}\)に対し、\(\iota^{\bullet}\left(O\right)=A\cap O\in\mathcal{O}_{A}\)となるので\(\iota\)は連続写像になる。(2)
\(Y\in\mathcal{O}_{Y}\)であり、\(X\times Y\)での位相を\(\mathcal{O}_{X\times Y}\)とする。任意の\(O_{X}\in\mathcal{O}_{X}\)に対し、\(O_{X}\times Y\)は\(\mathcal{O}_{X\times Y}\)の開基になるので\(\pi_{X}^{\bullet}\left(O_{X}\right)=O_{X}\times Y\in\mathcal{O}_{X\times Y}\)となり、\(\pi_{X}\)は連続写像になる。
(3)
\(X\setminus\sim\)の開集合全体の集合は\(\mathcal{O}_{X\setminus\sim}=\left\{ O_{X\setminus\sim};f^{\bullet}\left(O_{X\setminus\sim}\right)\in\mathcal{O}_{X}\right\} \)なので連続写像となる。ページ情報
| タイトル | 包含写像・射影・商写像は連続写像 |
| URL | https://www.nomuramath.com/fg4a1dnk/ |
| SNSボタン |
『3角関数・双曲線関数の還元公式(負角・余角・補角)』を更新しました。
調和数・一般化調和数のn回微分とテーラー展開
\[
\frac{d^{n}H_{z,\alpha}}{dz^{n}}=\zeta\left(\alpha\right)\delta_{0n}+\left(-1\right)^{n+1}Q\left(\alpha,n\right)\left(\zeta\left(\alpha+n\right)-H_{z,\alpha+n}\right)
\]
反復積分に関するコーシーの公式
\[
\int_{a}^{x}\int_{a}^{y_{1}}\cdots\int_{a}^{y_{n-1}}f\left(y_{n}\right)dy_{n}\cdots dy_{1}=\frac{1}{\left(n-1\right)!}\int_{a}^{x}\left(x-t\right)^{n-1}f\left(t\right)dt
\]
vec作用素の性質
\[
\mathrm{vec}\left(ABC\right)=\left(C^{T}\otimes A\right)\mathrm{vec}\left(B\right)
\]

