カントールの区間縮小法
カントールの区間縮小法
閉区間\(I_{n}=\left[a_{n},b_{n}\right],\left(n\in\mathbb{N}\right)\)が\(I_{n}\supseteq I_{n+1}\)を満たし、\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=0\)となるとき、\(\bigcap_{n\in\mathbb{N}}I_{n}=\left\{ \alpha\right\} \)となる\(\alpha\)が存在する。
ここで\(\alpha=\lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}b_{n}\)である。
閉区間\(I_{n}=\left[a_{n},b_{n}\right],\left(n\in\mathbb{N}\right)\)が\(I_{n}\supseteq I_{n+1}\)を満たし、\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=0\)となるとき、\(\bigcap_{n\in\mathbb{N}}I_{n}=\left\{ \alpha\right\} \)となる\(\alpha\)が存在する。
ここで\(\alpha=\lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}b_{n}\)である。
\(a_{n}\)は有界で単調増加数列であるので\(\lim_{n\rightarrow\infty}a_{n}=\alpha\)となる\(\alpha\)が存在する。
同様に\(b_{n}\)は有界で単調減少数列であるので\(\lim_{n\rightarrow\infty}b_{n}=\beta\)となる\(\beta\)が存在する。
\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=\beta-\alpha=0\)なので\(\alpha=\beta\)となる。
任意の\(n\)に対し\(a_{n}\leq\alpha\leq b_{n}\)となるので\(\alpha\in I_{n}\)となり、\(\lim_{n\rightarrow\infty}I_{n}=\lim_{n\rightarrow\infty}\left[a_{n},b_{n}\right]=\alpha\)となる。
これより、題意は成り立つ。
同様に\(b_{n}\)は有界で単調減少数列であるので\(\lim_{n\rightarrow\infty}b_{n}=\beta\)となる\(\beta\)が存在する。
\(\lim_{n\rightarrow\infty}\left(b_{n}-a_{n}\right)=\beta-\alpha=0\)なので\(\alpha=\beta\)となる。
任意の\(n\)に対し\(a_{n}\leq\alpha\leq b_{n}\)となるので\(\alpha\in I_{n}\)となり、\(\lim_{n\rightarrow\infty}I_{n}=\lim_{n\rightarrow\infty}\left[a_{n},b_{n}\right]=\alpha\)となる。
これより、題意は成り立つ。
ページ情報
| タイトル | カントールの区間縮小法 |
| URL | https://www.nomuramath.com/tmv0mq6l/ |
| SNSボタン |
実数列では一様収束と一様コーシー列は同値
一様コーシー列・一様収束列の定義と性質
\[
\forall\epsilon>0,\exists N\in\mathbb{N},\forall x\in I;\left(N\leq m,n\right)\rightarrow d\left(f_{m}\left(x\right),f_{n}\left(x\right)\right)<\epsilon
\]
各点収束と一様収束と広義一様収束の定義
\[
\lim_{n\rightarrow\infty}\sup_{x\in I}\left|f_{n}\left(x\right)-f\left(x\right)\right|=0
\]
上限・下限と上極限・下極限の積の大小関係
\[
\left(\sup_{n\in\mathbb{N}}a_{n}\right)\left(\inf_{n\in\mathbb{N}}b_{n}\right)\leq\sup_{n\in\mathbb{N}}\left(a_{n}b_{n}\right)
\]

