1と3角関数・双曲線関数(半角の公式の拡張)
1と3角関数・双曲線関数(半角の公式の拡張)
次の関係が成り立つ。
3角関数
双曲線関数
次の関係が成り立つ。
3角関数
(1)
\[ 1+\cos z=2\cos^{2}\frac{z}{2} \](2)
\[ 1-\cos z=2\sin^{2}\frac{z}{2} \](3)
\[ 1+\sin z=\left(\cos\frac{z}{2}+\sin\frac{z}{2}\right)^{2} \](4)
\[ 1-\sin z=\left(\cos\frac{z}{2}-\sin\frac{z}{2}\right)^{2} \]双曲線関数
(5)
\[ 1+\cosh z=2\cosh^{2}\frac{z}{2} \](6)
\[ 1-\cosh z=-2\sinh^{2}\frac{z}{2} \](7)
\[ 1+i\sinh z=\left(\cosh\frac{z}{2}+i\sinh\frac{z}{2}\right)^{2} \](8)
\[ 1-i\sinh z=\left(\cosh\frac{z}{2}-i\sinh\frac{z}{2}\right)^{2} \](1)
倍角の公式より、\begin{align*} \cos\left(2z\right) & =\cos^{2}z-\sin^{2}z\\ & =\cos^{2}z-\left(1-\cos^{2}z\right)\\ & =2\cos^{2}z-1 \end{align*} なので、
\[ 1+\cos\left(2z\right)=2\cos^{2}z \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1+\cos z=2\cos^{2}\frac{z}{2} \] となるので題意は成り立つ。
(2)
倍角の公式より、\begin{align*} \cos\left(2z\right) & =\cos^{2}z-\sin^{2}z\\ & =1-\sin^{2}z-\sin^{2}z\\ & =1-2\sin^{2}z \end{align*} なので、
\[ 1-\cos\left(2z\right)=2\sin^{2}z \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1-\cos z=2\sin^{2}\frac{z}{2} \] となるので題意は成り立つ。
(3)
倍角の公式より、\begin{align*} \sin\left(2z\right) & =2\sin z\cos z\\ & =\left(\cos z+\sin z\right)^{2}-\left(\cos^{2}z+\sin^{2}z\right)\\ & =\left(\cos z+\sin z\right)^{2}-1 \end{align*} なので、
\[ 1+\sin\left(2z\right)=\left(\cos z+\sin z\right)^{2} \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1+\sin z=\left(\cos z+\sin\frac{z}{2}\right)^{2} \] となるので題意は成り立つ。
(4)
倍角の公式より、\begin{align*} \sin\left(2z\right) & =2\sin z\cos z\\ & =-\left(\cos z-\sin z\right)^{2}+\left(\cos^{2}z+\sin^{2}z\right)\\ & =-\left(\cos z+\sin z\right)^{2}+1 \end{align*} なので、
\[ 1-\sin\left(2z\right)=\left(\cos z-\sin z\right)^{2} \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1+\sin z=\left(\cos\frac{z}{2}-\sin\frac{z}{2}\right)^{2} \] となるので題意は成り立つ。
(5)
(1)より、\begin{align*} 1+\cosh z & =1+\cos\left(iz\right)\\ & =2\cos^{2}\frac{iz}{2}\\ & =2\cosh^{2}\frac{z}{2} \end{align*}
(5)-2
倍角の公式より、\begin{align*} \cosh\left(2z\right) & =\cosh^{2}z+\sinh^{2}z\\ & =\cosh^{2}z+\left(\cosh^{2}z-1\right)\\ & =2\cosh^{2}z-1 \end{align*} なので、
\[ 1+\cosh\left(2z\right)=2\cosh^{2}z \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1+\cosh z=2\cosh^{2}\frac{z}{2} \] となるので題意は成り立つ。
(6)
(2)より、\begin{align*} 1-\cosh z & =1-\cos\left(iz\right)\\ & =2\sin^{2}\frac{iz}{2}\\ & =2i^{2}\sin^{2}\frac{z}{2}\\ & =-2\sinh^{2}\frac{z}{2} \end{align*}
(6)-2
倍角の公式より、\begin{align*} \cosh\left(2z\right) & =\cosh^{2}z+\sinh^{2}z\\ & =1+\sinh^{2}z+\sinh^{2}z\\ & =1+2\sinh^{2}z \end{align*} なので、
\[ 1-\cosh\left(2z\right)=-2\sinh^{2}z \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1-\cosh z=-2\sinh^{2}\frac{z}{2} \] となるので題意は成り立つ。
(7)
(3)より、\begin{align*} 1+i\sinh z & =1+\sin\left(iz\right)\\ & =\left(\cos\frac{iz}{2}+\sin\frac{iz}{2}\right)^{2}\\ & =\left(\cosh\frac{z}{2}+i\sinh\frac{z}{2}\right)^{2} \end{align*}
(7)-2
倍角の公式より、\begin{align*} \sinh\left(2z\right) & =2\sinh z\cosh z\\ & =-i\left(\cosh z+i\sinh z\right)^{2}+i\left(\cosh^{2}z-\sinh^{2}z\right)\\ & =-i\left(\cosh z+i\sinh z\right)^{2}+i \end{align*} なので、
\[ 1+i\sinh\left(2z\right)=\left(\cosh z+i\sinh z\right)^{2} \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1+i\sinh z=\left(i\sinh\frac{z}{2}+\cosh\frac{z}{2}\right)^{2} \] となるので題意は成り立つ。
(8)
(4)より、\begin{align*} 1-i\sinh z & =1-\sin\left(iz\right)\\ & =\left(\cos\frac{iz}{2}-\sin\frac{iz}{2}\right)^{2}\\ & =\left(\cosh\frac{z}{2}-i\sinh\frac{z}{2}\right)^{2} \end{align*}
(8)-2
倍角の公式より、\begin{align*} \sinh\left(2z\right) & =2\sinh z\cosh z\\ & =-\left(\cosh z-i\sinh z\right)^{2}+\left(\cosh^{2}z-\sinh^{2}z\right)\\ & =-\left(\cosh z-i\sinh z\right)^{2}+1 \end{align*} なので、
\[ 1-\sinh\left(2z\right)=\left(\cosh z-i\sinh z\right)^{2} \] となり\(z\rightarrow\frac{z}{2}\)とおくと、
\[ 1+\sinh z=\left(\cosh\frac{z}{2}-i\sinh\frac{z}{2}\right)^{2} \] となるので題意は成り立つ。
ページ情報
タイトル | 1と3角関数・双曲線関数(半角の公式の拡張) |
URL | https://www.nomuramath.com/m1o8dzhb/ |
SNSボタン |
三角関数の積
\[
\prod_{k=1}^{n-1}\sin\frac{k\pi}{n}=\frac{n}{2^{n-1}}
\]
三角関数と双曲線関数のn乗積分
\[
\int\sin^{2n+m_{\pm}}xdx=\frac{\Gamma\left(n+\frac{1}{2}+\frac{m_{\pm}}{2}\right)}{\Gamma\left(n+1+\frac{m_{\pm}}{2}\right)}\left\{ -\frac{1}{2}\sum_{k=0}^{n-1}\left(\frac{\Gamma\left(k+1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(k+\frac{3}{2}+\frac{m_{\pm}}{2}\right)}\cos x\sin^{2k+1+m_{\pm}}x\right)+\frac{\Gamma\left(1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(\frac{1}{2}+\frac{m_{\pm}}{2}\right)}\int\sin^{m_{\pm}}xdx\right\}
\]
逆三角関数と逆双曲線関数の負角
\[
\Sin^{\bullet}\left(-z\right)=-\Sin^{\bullet}z
\]
正接関数・双曲線正接関数の多重対数関数表示
\[
\tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right)
\]