正接関数・双曲線正接関数の半角公式の別表示
正接関数・双曲線正接関数の半角公式の別表示
(1)
\[ \tan\frac{z}{2}=\frac{\sin z}{1+\cos z} \](2)
\[ \tanh\frac{z}{2}=\frac{\sinh\left(z\right)}{1+\cosh\left(z\right)} \](1)
\begin{align*} \tan\frac{z}{2} & =\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}+1-\tan^{2}\frac{z}{2}}\\ & =\frac{\frac{2\tan\frac{z}{2}}{1+\tan^{2}\frac{z}{2}}}{1+\frac{1-\tan^{2}\frac{z}{2}}{1+\tan^{2}\frac{z}{2}}}\\ & =\frac{\sin z}{1+\cos z} \end{align*}(2)
\begin{align*} \tanh\frac{z}{2} & =-i\tan\frac{iz}{2}\\ & =-i\frac{\sin\left(iz\right)}{1+\cos\left(iz\right)}\\ & =\frac{\sinh\left(z\right)}{1+\cosh\left(z\right)} \end{align*}ページ情報
タイトル | 正接関数・双曲線正接関数の半角公式の別表示 |
URL | https://www.nomuramath.com/nmhzqc7h/ |
SNSボタン |
3角関数と双曲線関数の加法定理
\[
\sin(x\pm y)=\sin x\cos y\pm\cos x\sin y
\]
逆三角関数と逆双曲線関数の関係
\[
\Sin^{\bullet}\left(iz\right)=i\Sinh^{\bullet}z
\]
逆三角関数と逆双曲線関数の積分表示
\[
\sin^{\bullet}x=\int_{0}^{x}\frac{1}{\sqrt{1-t^{2}}}dt
\]
逆3角関数と逆双曲線関数の微分
\[
\frac{d}{dx}\sin^{\bullet}x=\frac{1}{\sqrt{1-x^{2}}}
\]