第1種・第2種不完全ガンマ関数の定義
第1種・第2種不完全ガンマ関数の定義
\[ \gamma\left(a,x\right)=\int_{0}^{x}t^{a-1}e^{-t}dt \]
(1)第1種不完全ガンマ関数
\(\Re\left(a\right)>0\)とする。\[ \gamma\left(a,x\right)=\int_{0}^{x}t^{a-1}e^{-t}dt \]
(2)第2種不完全ガンマ関数
\[ \Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt \]ページ情報
タイトル | 第1種・第2種不完全ガンマ関数の定義 |
URL | https://www.nomuramath.com/qe15jqle/ |
SNSボタン |
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]
ガンマ関数の極限問題
\[
\lim_{x\rightarrow0}\frac{\Gamma(ax)}{\Gamma(x)}=\frac{1}{a}
\]
ガウスの乗法公式
\[
\Gamma(nz)=\frac{n^{nz-\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{k=0}^{n-1}\Gamma\left(z+\frac{k}{n}\right)
\]
第1種・第2種不完全ガンマ関数の漸化式
\[
\Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x}
\]