第1種・第2種不完全ガンマ関数の定義
第1種・第2種不完全ガンマ関数の定義
\[ \gamma\left(a,x\right)=\int_{0}^{x}t^{a-1}e^{-t}dt \]
(1)第1種不完全ガンマ関数
\(\Re\left(a\right)>0\)とする。\[ \gamma\left(a,x\right)=\int_{0}^{x}t^{a-1}e^{-t}dt \]
(2)第2種不完全ガンマ関数
\[ \Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt \]ページ情報
| タイトル | 第1種・第2種不完全ガンマ関数の定義 |
| URL | https://www.nomuramath.com/qe15jqle/ |
| SNSボタン |
ディガンマ関数の積分表示
\[
\psi\left(z\right)=-\gamma+\int_{0}^{1}\frac{1-x^{z-1}}{1-x}dx
\]
第1種・第2種不完全ガンマ関数の整数値
\[
\gamma\left(n+1,x\right)=-e^{-x}\sum_{k=0}^{n}\left(P\left(n,k\right)x^{n-k}\right)+n!
\]
ポリガンマ(ディガンマ)関数の乗法公式
\[
\psi^{\left(m\right)}\left(nz\right)=\delta_{0,m}\log n+\frac{1}{n^{m+1}}\sum_{k=0}^{n-1}\psi^{\left(m\right)}\left(z+\frac{k}{n}\right)
\]
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]

