逆関数の微分
逆関数の微分
\[ \frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \]
\[ \frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \]
(0)
\begin{align*} \frac{df^{\bullet}(x)}{dx} & =\frac{df^{\bullet}(x)}{df\left(f^{\bullet}(x)\right)}\\ & =\left(\frac{df\left(f^{\bullet}(x)\right)}{df^{\bullet}(x)}\right)^{-1} \end{align*}(0)-2
\begin{align*} \frac{df^{\bullet}(x)}{dx} & =\frac{dy}{df(y)}\cnd{y=f^{\bullet}(x)}\\ & =\left[\left(\frac{df(y)}{dy}\right)^{-1}\right]_{y=f^{\bullet}(x)}\\ & =\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \end{align*}ページ情報
タイトル | 逆関数の微分 |
URL | https://www.nomuramath.com/sab0pzet/ |
SNSボタン |
反復積分に関するコーシーの公式
\[
\int_{a}^{x}\int_{a}^{y_{1}}\cdots\int_{a}^{y_{n-1}}f\left(y_{n}\right)dy_{n}\cdots dy_{1}=\frac{1}{\left(n-1\right)!}\int_{a}^{x}\left(x-t\right)^{n-1}f\left(t\right)dt
\]
微分・原始関数・定積分・不定積分の定義
\[
\frac{df(x)}{dx}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
\]
部分積分と繰り返し部分積分
\[
\int f(x)g(x)dx=\sum_{k=0}^{n-1}\left(-1\right)^{k}f^{(-(k+1))}(x)g^{(k)}(x)+(-1)^{n}\int f^{(-n)}(x)g^{(n)}(x)dx
\]
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]