偶数と奇数の2重階乗
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ \left(2n\right)!!=2^{n}n! \](2)
\[ \left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \](1)
\begin{align*} \left(2n\right)!! & =\prod_{k=1}^{n}2k\\ & =2^{n}\prod_{k=1}^{n}k\\ & =2^{n}n! \end{align*}(2)
\begin{align*} \left(2n+1\right)!! & =\prod_{k=1}^{n}\left(2k+1\right)\\ & =2^{n}\prod_{k=1}^{n}\left(k+\frac{1}{2}\right)\\ & =2^{n}\prod_{k=1}^{n}\frac{\left(k+\frac{1}{2}\right)!}{\left(k-\frac{1}{2}\right)!}\\ & =2^{n}\frac{\left(n+\frac{1}{2}\right)!}{\left(\frac{1}{2}\right)!}\\ & =2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)} \end{align*}ページ情報
タイトル | 偶数と奇数の2重階乗 |
URL | https://www.nomuramath.com/i5egz33z/ |
SNSボタン |
ガンマ関数の相反公式
\[
\Gamma(z)\Gamma(1-z)=\pi\sin^{-1}(\pi z)
\]
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
ガンマ関数のハンケル積分表示
\[
\Gamma\left(z\right)=\frac{i}{2\sin\left(\pi z\right)}\int_{C}\left(-\tau\right)^{z-1}e^{-\tau}d\tau
\]