ディクソンの等式
ディクソンの等式
\(a,b,c\in\mathbb{N}_{0}\)とする。
\(a,b,c\in\mathbb{N}_{0}\)とする。
(1)
\[ \sum_{k=-a}^{a}(-1)^{k}C(a+b,a+k)C(b+c,b+k)C(c+a,c+k)=\frac{(a+b+c)!}{a!b!c!} \](2)
\[ \sum_{k=-a}^{a}(-1)^{k}C^{3}(2a,a+k)=\frac{(3a)!}{\left(a!\right)^{3}} \](1)
略(2)
(1)で\(a=b=c\)とおくと、\[ \sum_{k=-a}^{a}(-1)^{k}C^{3}(2a,a+k)=\frac{(3a)!}{\left(a!\right)^{3}} \] となるので与式は成り立つ。
ページ情報
| タイトル | ディクソンの等式 |
| URL | https://www.nomuramath.com/kga8k4q6/ |
| SNSボタン |
2項変換と交代2項変換の逆変換
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}C(n,k)b_{k}
\]
2項係数の第1引数と第2引数同士の総和
\[
\sum_{j=0}^{k-a}\left(-1\right)^{j}C\left(k,j+a\right)C\left(j+b,c\right)=\begin{cases}
\left(-1\right)^{k-a}C\left(b-a,c-k\right) & a-b+c\leq k\\
0 & k<a-b+c
\end{cases}
\]
2項係数が0になるとき
\[
\forall m,n\in\mathbb{Z},\left(0\leq m<n\right)\lor\left(n<0\leq m\right)\lor\left(m<n<0\right)\Leftrightarrow C\left(m,n\right)=0
\]
2項係数の母関数
\[
\sum_{k=0}^{\infty}C(x+k,k)t^{k}=(1-t)^{-(x+1)}
\]

