三角関数の合成
三角関数の合成
(1)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*} \begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}(2)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta) \end{align*} \begin{align*} \beta & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*}(1)
\begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}+\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*}
(2)
(1)より、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha)\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta+\alpha-\frac{\pi}{2})\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta)\qquad,\qquad\beta=\frac{\pi}{2}-\alpha \end{align*} \begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*} 同様に、
\begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arccos\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} これより、
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}
(2)別解
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}+\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\cos\beta+\sin\theta\sin\beta\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta-\beta) \end{align*}
ページ情報
タイトル | 三角関数の合成 |
URL | https://www.nomuramath.com/ti9axpox/ |
SNSボタン |
正弦と余弦のべき乗の積の積分の超幾何関数表示
\[
\int\sin^{\alpha}\left(x\right)\cos^{\beta}\left(x\right)dx=\frac{\cos^{\beta-1}}{\left(\cos^{2}\left(x\right)\right)^{\frac{\beta-1}{2}}}\frac{\sin^{\alpha+1}\left(x\right)}{\alpha+1}F\left(\frac{1-\beta}{2},\frac{\alpha+1}{2};\frac{\alpha+3}{2};\sin^{2}\left(x\right)\right)+C
\]
巾関数と逆三角関数・逆双曲線関数の積の積分
\[
\int z^{\alpha}\Sin^{\bullet}zdz=\frac{1}{\alpha+1}\left(z^{\alpha+1}\Sin^{\bullet}z-\frac{z^{\alpha+2}}{\alpha+2}F\left(\frac{1}{2},\frac{\alpha}{2}+1;\frac{\alpha}{2}+2;z^{2}\right)\right)+C
\]
三角関数(双曲線関数)の対数とリーマン・ゼータ関数
\[
\log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k}
\]
逆三角関数の負角、余角、逆数
\[
\cos^{\bullet}x+\sin^{\bullet}x=\frac{\pi}{2}
\]