連続で出来る部分分数分解
\(n\in\mathbb{Z}\)のとき以下のように部分分数分解又は展開が出来る。
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[
\frac{1}{x(x+a)^{n}}=\frac{1}{a}\left(\frac{1}{x(x+a)^{n-1}}-\frac{1}{(x+a)^{n}}\right)
\]
これより、
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
ページ情報
| タイトル | 連続で出来る部分分数分解 |
| URL | https://www.nomuramath.com/w1ww4359/ |
| SNSボタン |
べき等行列の性質
べき等行列はユニタリ行列で対角化が可能である。
べき零行列の性質
べき零行列$N$は正則ではない。
同次連立1次方程式の定義と性質
\[
A\boldsymbol{x}=\boldsymbol{0}
\]
連立1次方程式と拡大係数行列の定義と性質
\[
\left(A,\boldsymbol{b}\right)=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1n} & b_{1}\\
a_{21} & a_{22} & \cdots & a_{2n} & b_{2}\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m}
\end{array}\right)
\]

