連続で出来る部分分数分解
\(n\in\mathbb{Z}\)のとき以下のように部分分数分解又は展開が出来る。
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
\[
\frac{1}{x(x+a)^{n}}=\frac{1}{a}\left(\frac{1}{x(x+a)^{n-1}}-\frac{1}{(x+a)^{n}}\right)
\]
これより、
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
\begin{align*} \frac{1}{x(x+a)^{n}} & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left\{ \frac{a^{k}}{x(x+a)^{k}}-\frac{a^{k-1}}{x(x+a)^{k-1}}\right\} \\ & =\frac{1}{a^{n}x}+\frac{1}{a^{n}}\sum_{k=1}^{n}\left(-\frac{a^{k-1}}{(x+a)^{k}}\right)\\ & =\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+a)^{k}}\right) \end{align*}
ページ情報
| タイトル | 連続で出来る部分分数分解 |
| URL | https://www.nomuramath.com/w1ww4359/ |
| SNSボタン |
正接関数・双曲線正接関数の多重対数関数表示
\[
\tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right)
\]
sinc関数のn乗広義積分
\[
\int_{0}^{\infty}sinc^{n}(x)dx=\frac{\pi}{2^{n+1}(n-1)!}\sum_{k=0}^{n}C(n,k)(-1)^{k}(n-2k)^{n-1}\sgn(n-2k)
\]
『ファンデルモンドの畳み込み定理と第1引数の畳み込み』を更新しました。
オイラーのトーシェント関数の性質
\[
\phi(p^{n})=p^{n}-p^{n-1}
\]

