階乗・ガンマ関数の商と階乗冪(上昇階乗・下降階乗)の関係
階乗・ガンマ関数の商と階乗冪(上昇階乗・下降階乗)の関係
(1)
\begin{align*} \frac{x!}{y!} & =P\left(x,x-y\right)\\ & =P^{-1}\left(y,y-x\right)\\ & =Q\left(y+1,x-y\right)\\ & =Q^{-1}\left(x+1,y-x\right) \end{align*}(2)
\begin{align*} \frac{\Gamma\left(x\right)}{\Gamma\left(y\right)} & =P\left(x-1,x-y\right)\\ & =P^{-1}\left(y-1,y-x\right)\\ & =Q\left(y,x-y\right)\\ & =Q^{-1}\left(x,y-x\right) \end{align*}(1)
\begin{align*} \frac{x!}{y!} & =\frac{x!}{\left(x-\left(x-y\right)\right)!}\\ & =P\left(x,x-y\right) \end{align*} \begin{align*} \frac{x!}{y!} & =\frac{\left(y-\left(y-x\right)\right)!}{y!}\\ & =P^{-1}\left(y,y-x\right) \end{align*} \begin{align*} \frac{x!}{y!} & =\frac{\Gamma\left(x+1\right)}{\Gamma\left(y+1\right)}\\ & =\frac{\Gamma\left(y+1+\left(x-y\right)\right)}{\Gamma\left(y+1\right)}\\ & =Q\left(y+1,x-y\right) \end{align*} \begin{align*} \frac{x!}{y!} & =\frac{\Gamma\left(x+1\right)}{\Gamma\left(y+1\right)}\\ & =\frac{\Gamma\left(x+1\right)}{\Gamma\left(x+1+\left(y-x\right)\right)}\\ & =Q^{-1}\left(x+1,y-x\right) \end{align*}(2)
(1)より、\begin{align*} \frac{\Gamma\left(x\right)}{\Gamma\left(y\right)} & =\frac{\left(x-1\right)!}{\left(y-1\right)!}\\ & =P\left(x-1,x-y\right)\\ & =P^{-1}\left(y-1,y-x\right)\\ & =Q\left(y,x-y\right)\\ & =Q^{-1}\left(x,y-x\right) \end{align*}
ページ情報
タイトル | 階乗・ガンマ関数の商と階乗冪(上昇階乗・下降階乗)の関係 |
URL | https://www.nomuramath.com/qe729eua/ |
SNSボタン |
階乗冪(上昇階乗・下降階乗)の1項間漸化式
\[
P(x+1,y)=\frac{x+1}{x-y+1}P(x,y)
\]
和の階乗冪(下降階乗・上昇階乗)
\[
P(x+y,n)=\sum_{k=0}^{n}C(n,k)P(x,k)P(y,n-k)
\]
階乗冪(上昇階乗・下降階乗)同士の関係
\[
P(x,y)=P^{-1}(x-y,-y)
\]
階乗冪(上昇階乗・下降階乗)の定義
\[
P(x,y)=\frac{x!}{(x-y)!}
\]