総和と総乗の逆順
総和と総乗の逆順
(1)
\[ \sum_{k=a}^{b}f\left(k\right)=\sum_{k=-b}^{-a}f\left(-k\right) \](2)
\[ \prod_{k=a}^{b}f\left(k\right)=\prod_{k=-b}^{-a}f\left(-k\right) \](1)
\begin{align*} \sum_{k=a}^{b}f\left(k\right) & =f\left(a\right)+f\left(a+1\right)+\cdots+f\left(b\right)\\ & =f\left(b\right)+f\left(b+1\right)+\cdots+f\left(a\right)\\ & =f\left(-\left(-b\right)\right)+f\left(-\left(-b-1\right)\right)+\cdots+f\left(-\left(-a\right)\right)\\ & =\sum_{k=-b}^{-a}f\left(-k\right) \end{align*}(2)
\begin{align*} \prod_{k=a}^{b}f\left(k\right) & =\prod_{k=a}^{b}\exp\left(\Log\left(f\left(k\right)\right)\right)\\ & =\exp\left(\sum_{k=a}^{b}\Log\left(f\left(k\right)\right)\right)\\ & =\exp\left(\sum_{k=-b}^{-a}\Log\left(f\left(-k\right)\right)\right)\\ & =\sum_{k=-b}^{a}\exp\left(\Log\left(f\left(-k\right)\right)\right)\\ & =\prod_{k=-b}^{-a}f\left(-k\right) \end{align*}ページ情報
タイトル | 総和と総乗の逆順 |
URL | https://www.nomuramath.com/q9pccacy/ |
SNSボタン |
[定義]絶対収束と条件収束
\[
\sum_{k=1}^{\infty}\left|\alpha_{k}\right|<\infty
\]
ラマヌジャンの無限根
\[
1\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots}}}}=3
\]
分母と分子交互に根号の総乗
\[
\prod_{k=1}^{\infty}\frac{\sqrt[2k-1]{\alpha}}{\sqrt[2k]{\alpha}}=2^{\Log\alpha}
\]
積の形の無限多重根号
\[
\sqrt[a_{1}]{r_{1}\sqrt[a_{2}]{r_{2}\cdots\sqrt[a_{n}]{r_{n}}}}=\exp\left\{ \sum_{k=1}^{n}\left(\Log\left(r_{k}\right)\prod_{j=1}^{k}\frac{1}{a_{j}}\right)\right\}
\]