逆3角関数の積の積分
逆3角関数の積の積分
次の逆3角関数の積の積分を求めよ。
\[ \int\sin^{\bullet}x\cos^{\bullet}xdx=? \]
次の逆3角関数の積の積分を求めよ。
\[ \int\sin^{\bullet}x\cos^{\bullet}xdx=? \]
\begin{align*}
\int\sin^{\bullet}x\cos^{\bullet}xdx & =x\sin^{\bullet}x\cos^{\bullet}x-\int\frac{x}{\sqrt{1-x^{2}}}\left(\cos^{\bullet}x-\sin^{\bullet}x\right)dx\\
& =x\sin^{\bullet}x\cos^{\bullet}x+\sqrt{1-x^{2}}\left(\cos^{\bullet}x-\sin^{\bullet}x\right)+\int\sqrt{1-x^{2}}\left(\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-x^{2}}}\right)dx\\
& =x\sin^{\bullet}x\cos^{\bullet}x+\sqrt{1-x^{2}}\left(\cos^{\bullet}x-\sin^{\bullet}x\right)+2x+C
\end{align*}
ページ情報
タイトル | 逆3角関数の積の積分 |
URL | https://www.nomuramath.com/ogvicfq0/ |
SNSボタン |
γとπが出てくる定積分
\[
\int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=?
\]
tanの平方根の積分
\[
\int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\]
分母に正接がある関数の定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{x}{\tan x}dx=?
\]
イータ関数の導関数がでてきます
\[
\int_{0}^{\infty}\frac{\log x}{1+e^{x}}dx=?
\]