床関数と天井関数の性質

床関数と天井関数の性質

(1)

\[ \left\lceil x\right\rceil -1\leq\left\lfloor x\right\rfloor \leq x\leq\left\lceil x\right\rceil \leq\left\lfloor x\right\rfloor +1 \]

(2)

\[ \left\lceil z\right\rceil =-\left\lfloor -z\right\rfloor \]

(3)

\[ \left\lfloor z\right\rfloor =-\left\lceil -z\right\rceil \]

(4)

\[ \left\lfloor \left\lfloor z\right\rfloor \right\rfloor =\left\lfloor z\right\rfloor \]

(5)

\[ \left\lceil \left\lceil z\right\rceil \right\rceil =\left\lceil z\right\rceil \]

-

\(\left\lfloor z\right\rfloor \)は床関数

\(\left\lceil z\right\rceil \)は天井関数

(1)

\begin{align*} \left\lceil x\right\rceil -1 & =x-\mod\left(x,-1\right)-1\\ & =x+\mod\left(-x,1\right)-1\\ & =x+\left|\sgn\mod\left(x,1\right)\right|-\mod\left(x,1\right)-1\\ & =x-\mod\left(x,1\right)-\delta_{0,\mod\left(x,1\right)}\\ & \leq x-\mod\left(x,1\right)\\ & =\left\lfloor x\right\rfloor \\ & \leq x\\ & \leq x-\mod\left(x,-1\right)\\ & =\left\lceil x\right\rceil \\ & =x+\mod\left(-x,1\right)\\ & =x-\mod\left(x,1\right)+\left|\sgn\mod\left(x,1\right)\right|\\ & \leq x-\mod\left(x,1\right)+1\\ & =\left\lfloor x\right\rfloor +1 \end{align*}

(2)

\begin{align*} -\left\lfloor -z\right\rfloor & =-\left(-z-\mod\left(-z,1\right)\right)\\ & =z+\mod\left(-z,1\right)\\ & =z-\mod\left(z,-1\right)\\ & =\left\lceil z\right\rceil \end{align*}

(3)

\begin{align*} -\left\lceil -z\right\rceil & =-\left(-z-\mod\left(-z,-1\right)\right)\\ & =z+\mod\left(-z,-1\right)\\ & =z-\mod\left(z,1\right)\\ & =\left\lfloor z\right\rfloor \end{align*}

(4)

\begin{align*} \left\lfloor \left\lfloor z\right\rfloor \right\rfloor & =\left\lfloor \left\lfloor z\right\rfloor +\mod\left(z,1\right)\right\rfloor \\ & =\left\lfloor z\right\rfloor \end{align*}

(5)

\begin{align*} \left\lceil \left\lceil z\right\rceil \right\rceil & =\left\lceil \left\lceil z\right\rceil +\mod\left(z,-1\right)\right\rceil \\ & =\left\lceil z\right\rceil \end{align*}

ページ情報

タイトル

床関数と天井関数の性質

URL

https://www.nomuramath.com/i1ds7rwg/

SNSボタン