分母分子に3角関数を含む定積分
分母分子に3角関数を含む定積分
次の積分を求めよ。
\[ \int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=? \]
次の積分を求めよ。
\[ \int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=? \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx & =\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\cos^{2}x\left(\tan x+1\right)^{2}}dx\\
& =\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\cos^{2}x\left(\tan x+1\right)^{2}}dx\\
& =\int_{0}^{\infty}\frac{\sqrt[3]{\tan x}}{\left(\tan x+1\right)^{2}}d\tan x\\
& =B\left(1+\frac{1}{3},2-\frac{1}{3}-1\right)\\
& =B\left(\frac{4}{3},\frac{2}{3}\right)\\
& =\frac{\Gamma\left(\frac{4}{3}\right)\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{4}{3}+\frac{2}{3}\right)}\\
& =\frac{\Gamma\left(\frac{4}{3}\right)\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(2\right)}\\
& =\frac{1}{3}\Gamma\left(\frac{1}{3}\right)\Gamma\left(1-\frac{1}{3}\right)\\
& =\frac{1}{3}\frac{\pi}{\sin\left(\frac{1}{3}\pi\right)}\\
& =\frac{2}{3\sqrt{3}}\pi\\
& =\frac{2\sqrt{3}}{9}\pi
\end{align*}
ページ情報
| タイトル | 分母分子に3角関数を含む定積分 |
| URL | https://www.nomuramath.com/bezq90d2/ |
| SNSボタン |
ガウス積分のような定積分
\[
\int_{0}^{\infty}\frac{1}{1+e^{x^{2}}}dx=?
\]
床関数を含む積分です
\[
\int_{0}^{\frac{\pi}{2}}\frac{\left\lfloor \tan x\right\rfloor }{\tan x}dx=?
\]
逆3角関数の積の積分
\[
\int\sin^{\bullet}x\cos^{\bullet}xdx=?
\]
分母に双曲線関数で分子に3角関数の定積分
\[
\int_{-\infty}^{\infty}\frac{\cos x}{\cosh x}dx=?
\]

