分母にxの20乗がある定積分
分母にxの20乗がある定積分
次の定積分を求めよ
\[ \int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=? \]
次の定積分を求めよ
\[ \int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=? \]
\begin{align*}
\int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx & =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{x^{20}-8x^{10}+15}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}\right)^{2}-8x^{10}+15}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}-4\right)^{2}-1}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(\left(x^{10}-4\right)-1\right)\left(\left(x^{10}-4\right)+1\right)}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}-5\right)\left(x^{10}-3\right)}dx^{10}\\
& =\frac{1}{20}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}-5\right)}-\frac{1}{\left(x^{10}-3\right)}dx^{10}\\
& =\frac{1}{20}\left[\log\left(x^{10}-5\right)-\log\left(x^{10}-3\right)\right]_{x^{10}\rightarrow2^{10}}^{\infty}\\
& =\frac{1}{20}\left[\log\frac{x^{10}-5}{x^{10}-3}\right]_{x^{10}\rightarrow2^{10}}^{\infty}\\
& =-\frac{1}{20}\log\frac{2^{10}-5}{2^{10}-3}\\
& =-\frac{1}{20}\log\frac{1019}{1021}\\
& =\frac{1}{20}\log\frac{1021}{1019}
\end{align*}
ページ情報
タイトル | 分母にxの20乗がある定積分 |
URL | https://www.nomuramath.com/g0vca9la/ |
SNSボタン |
分母分子に3角関数を含む定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=?
\]
床関数の総和の2乗の定積分
\[
\int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx=?
\]
分母に双曲線関数で分子に3角関数の定積分
\[
\int_{-\infty}^{\infty}\frac{\cos x}{\cosh x}dx=?
\]
指数関数を分母と分子に含む対数の定積分
\[
\int_{0}^{\infty}\log\left(\frac{e^{x}-1}{e^{x}+1}\right)dx=?
\]