分母にxの20乗がある定積分
分母にxの20乗がある定積分
次の定積分を求めよ
\[ \int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=? \]
次の定積分を求めよ
\[ \int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=? \]
\begin{align*}
\int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx & =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{x^{20}-8x^{10}+15}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}\right)^{2}-8x^{10}+15}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}-4\right)^{2}-1}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(\left(x^{10}-4\right)-1\right)\left(\left(x^{10}-4\right)+1\right)}dx^{10}\\
& =\frac{1}{10}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}-5\right)\left(x^{10}-3\right)}dx^{10}\\
& =\frac{1}{20}\int_{2^{10}}^{\infty}\frac{1}{\left(x^{10}-5\right)}-\frac{1}{\left(x^{10}-3\right)}dx^{10}\\
& =\frac{1}{20}\left[\log\left(x^{10}-5\right)-\log\left(x^{10}-3\right)\right]_{x^{10}\rightarrow2^{10}}^{\infty}\\
& =\frac{1}{20}\left[\log\frac{x^{10}-5}{x^{10}-3}\right]_{x^{10}\rightarrow2^{10}}^{\infty}\\
& =-\frac{1}{20}\log\frac{2^{10}-5}{2^{10}-3}\\
& =-\frac{1}{20}\log\frac{1019}{1021}\\
& =\frac{1}{20}\log\frac{1021}{1019}
\end{align*}
ページ情報
| タイトル | 分母にxの20乗がある定積分 |
| URL | https://www.nomuramath.com/g0vca9la/ |
| SNSボタン |
ガウス積分のような定積分
\[
\int_{0}^{\infty}\frac{1}{1+e^{x^{2}}}dx=?
\]
床関数を含む積分です
\[
\int_{0}^{\frac{\pi}{2}}\frac{\left\lfloor \tan x\right\rfloor }{\tan x}dx=?
\]
逆3角関数の積の積分
\[
\int\sin^{\bullet}x\cos^{\bullet}xdx=?
\]
分母に双曲線関数で分子に3角関数の定積分
\[
\int_{-\infty}^{\infty}\frac{\cos x}{\cosh x}dx=?
\]

