対角行列の性質\[ \diag\left(a_{1},a_{2},\cdots,a_{n}\right)\diag\left(b_{1},b_{2},\cdots,b_{n}\right)=\diag\left(a_{1}b_{1},a_{2}b_{2},\cdots,a_{n}b_{n}\right) \] べき等行列の性質べき等行列はユニタリ行列で対角化が可能である。 べき零行列の性質べき零行列$N$は正則ではない。 同次連立1次方程式の定義と性質\[ A\boldsymbol{x}=\boldsymbol{0} \]